Use of SPFs and CMFs in New Jersey

New Jersey Department of Transportation Bureau of Transportation Data & Safety

Some facts about New Jersey

- New jersey is the most densely populated state in the country
- 90% of NJ roadways are local
- 2/3 of the overall crashes occur on Local roadways
- Most of NJ is classified as Urban-Suburban
- NJ has 21 counties and 565 municipalities

More facts about New Jersey

Intersection Fatality						
a	verage					
National	21%					
New Jersey	29%					

Pedestrian Fatality					
average					
National	13%				
New Jersey	25%				

Background of NJDOT's HSIP

- Low Obligation Rate
- Ineligible Project Proposals
- Lacking Systemic Projects
- Missing SHSP Emphasis Areas:
 - Pedestrian Safety
 - Roadway Departure

Background of NJDOT's HSIP

HSIP Annual Apportionment under MAP-21more than doubled

\$57 Million

Background of New Jersey's HSIP

Executive Level Attention

FHWA Division Office & NJDOT Partnering

Background of New Jersey's HSIP

New Jersey's HSIP Guide includes:

- 1. Purpose
- 2. Program Overview
- 3. HSIP Funds Eligibility
- 4. HSIP Project Development Process
- 5. HSIP Reporting

New Jersey's HSIP Manual Item #4

Capitol Programs Delivery Concept Developments

- An HSM Predictive Analysis is required for alternatives for all HSIP projects > \$250K
- The Preferred Alternative Must Yield a B/C > 1

Alternative Analysis using SPFs

Urban and Suburban Arterial Predictive Method

Gen	aral Information	Logation Information			
Analyst	RC	Roadway	CR 616 (Leonardville Rd) - EXISTING		
Agency or Company	Monmouth County	Intersection	Intersection with East Rd (MP 16.93)		
Date Performed	09/17/15	Jurisdiction	Township of Middletown, Monmouth County		
200 M 1990 M 1990	nearman an 1 Servicines	Analysis Year	2016		
	Input Data	Base Conditions	Site Conditions		
Intersection type (38T, 38G, 48T, 48G)		-	486		
AADT major (veh/day)	AADT _{MOL} = 67,700 (veh/day)	-	11,378		
AADT minor (veh/day)	AADT _{MAX} = 33,400 (velvday)	-	6,327		
Intersection lighting (present/not present)		Not Present	Present		
Calibration factor, Ci		1.00	1.00		
Data for unsignalized intersections only:		03	-		
Number of major-road approaches	with left-turn lanes (0,1,2)	0	0		
Number of major-road approaches	with right-turn lanes (0,1,2)	0	0		
Data for signalized intersections only:		2 ÷ 3	8		
Number of approaches with left-turn	lanes (0,1,2,3,4) [for 38G, use maximum value of 3]	0	0		
Number of approaches with right-tur	m lanes (0,1,2,3,4) (for 38G, use maximum value of 3)	0	0		
Number of approaches with left-turn	signal phasing for 38G, use maximum value of 3]		0		
Type of left-turn signal phasing for L	.eg#1	Permissive	Not Applicable		
Type of left-turn signal phasing for L	eg #2		Not Applicable		
Type of left-turn signal phasing for L	eg #3		Not Applicable		
Type of left-turn signal phasing for L	eg #4 (if applicable)	-	Not Applicable		
Number of approaches with right-tur	m-on-red prohibited (for 39G, use maximum value of 3)	0	4		
Intersection red light cameras (pres	entinot present)	Not Present	Not Present		
Sum of all pedestrian crossing volu-	mes (PedVoi) - Signalized Intersections only		50		
Maximum number of lanes crossed	by a pedestrian (n _{www})	-	2		
Number of bus stops within 300 m (1,000 ft) of the intersection	0	2		
Schools within 300 m (1,000 ft) of th	e intersection (present/not present)	Not Present	Present		
Number of alcohol sales establishm	ents within 300 m (1,000 ft) of the intersection	0	0		

Worksheet 2B - Crash Modification Factors for Urban and Suburban Arterial Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
CMF for Left-Turn Lanes	CMF for Left-Turn Signal Phasing	CMF for Right-Turn Lanes	CMF for Right Turn on Red	CMF for Lighting	CMF for Red Light Cameras	Combined CMF
CMF 1/	CMF 21	CMF 3/	CMF 4	CIMF 5/	CM/F 6/	CI/F COME
from Table 12-24	from Table 12-25	from Table 12-26	from Equation 12-35	from Equation 12-36	from Equation 12-37	(1)*(2)*(3)*(4)*(5)*(6)
1.00	0.99	1.00	0.92	0.91	1.00	0.83

(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients from Table 12-10		Overdispersion Parameter, k from Table 12-10	Initial N _{stere} from Equation 12-	Proportion of Total mv Crashes n 12-	Adjucted N _{binv} (4) _{ropal} *(5)	Combined CMFs (7) from	Calibration Factor, C ₁	Predioted N _{biney} (6)*(7)*(8)	
										Sworth 13
Total	-10.99	1.07	0.23	0.39	2.763	1.000	2.763	0.83	1.00	2.298
Fatal and Injury (FI)	12.44	1.10	0.22	0.22	0.974	$(4)_m/((4)_m+(4)_{PDO})$	0.955	0.93	1.00	0.712
	12.14		0.33	0.024	0.310	1	0.03	1.00	0.712	
Property Damage Only (PDO)	-11.02	1.02	0.24	0.44	1.835	(5)TOTAL-(5)/1	1.907	0.83	1.00	1.586

 For calculation of benefits, use the values provided by Highway Safety Manual (HSM) for 2001 crash costs as listed in the table below. These values should adjusted to current year values.

Table 4A-1. Crash Cost Estimates by Crash Severity

Crash Type	Human Capital Crash Costs	Comprehensive Crash Costs
Fatal (K)	\$1,245,680	\$4,008,900
Disobling Indexy (A)	\$113,400	3216.000
Evident Injury (B)	\$41,990	\$78,000
Providele laginety (C)	\$28,400	\$44,800
PDO (0)	\$6,490	\$7,490

Source: Crash Cost Estimates by Maximum Police-Reported Inpary Seventy within Selected Cush Geometrics, 1994A-1987-05-051, October 2005

- Calculate the Benefits/Project Costs (B/C), which include the design costs, right of way costs and construction costs for the above figures.
- If B/C>1, provide the results to BTDS for review and consideration of HSIP funds. Please note, when calculating B/C the entire costs of project should be considered.
- If B/C<1 project is no longer eligible for HSIP funding.
- If the identified infrastructure improvements are greater than \$250,000 in cost then a Predictive Safety Analysis using the (HSM) will be required in the CD Phase. This process requires the following elements:
 - o Crash Diagram reflecting the individual crashes at the screened location.
 - Site Characteristics Data site characteristics data are needed for two types of sites- homogeneous roadway segments and intersections
 - Traffic Volume Data
 - o Crash History Data- application of crash history data is limited to certain conditions and methodologies within the HSM.
 - Calculation of the benefits from the reduced crashes correlated with the Predicted Safety Performance for the proposed alternatives.

Policy ≠ Reality

Changing Attitudes

- » New Jersey's HSIP Manual Roll Out
- > Developing Expertise
 - In-House Staff
 - Consultant Training
- > Advanced User Workshops
 > Customized Training for Local Safety Project Applications

> Ongoing Support

New Jersey's EDC-3 STIC Grant

New Jersey's HSIP Success Story

Spreadsheet CMF, Clearinghouse CMF and SPF Use

New Jersey Department of Transportation Bureau of Transportation Data & Safety

Using SPFs to predict crashes

Figure 1:

HSM Methods to estimate the expected average crash frequency:

Method 1 – Apply the Part C predictive method for both the existing and proposed conditions.

Method 2 – Apply the Part C Predictive method for the existing condition and apply an appropriate project CMF for the proposed condition.

Method 3 – If the Part C predictive method is not available, use an applicable SPF for the existing condition and apply an appropriate project CMF for the proposed condition.

Method 4 - Use observed crash frequency for the existing condition and apply an appropriate project CMF for the proposed condition.

4-Legged Signalized Intersection

Countermeasures in the proposed conditions include:

- Install exclusive left-turn lane (NB approach)
- Install exclusive right-turn lanes (EB and SB approaches)
- Protected left-turn timing phase (NB approach)
- Replace 8" signal heads with 12" signal heads (CMF = 0.54; angle type)
- Additional vehicle signal heads (CMF = 0.72; primary signal)
- Additional countdown signal heads (CMF = 0.30; vehicle/pedestrian type)
- Additional crosswalks (CMF = 0.81; not all crash type)
- Signal backplate (CMF =0.85; all crash and severity type)

2	A	В	С	D	E	F	G	н	1	J	K	
4 1	Data for unsign	alized interse	ections only:									
5	Number o	f major-road	approaches w	ith left-turn lar	nes (0,1,2)			0	ġ.			
6	Number of major-road approaches with right-turn lanes (0,1,2)						0	0	1			
7	Data for signaliz	ed intersect	ions only:						e			
8	Number o	f approache	s with left-turn I	anes (0,1,2,3	4) [for 3SG, u	se maximum va	lue of 3]	0				
9	Number o	f approache	s with right-turn	anes (0,1,2,	3,4) [for 3SG.	use maximum v	alue of 3]	0				
0	Number o	f approache	s with left-turn	signal phasing	for 3SG, use	maximum value	of 3]					
1	Type of le	ft-turn signa	I phasing for Le	eg #1				Permi	ssive			Pe
2	Type of le	ft-turn signa	I phasing for Le	eg #2								Not /
3	Type of le	ft-turn signa	phasing for Le	eg #3					ć			Not /
4	Type of le	ft-turn signa	I phasing for Le	eg #4 (if appli	cable)					Not A		
5	Number of approaches with right-turn-on-red prohibited [for 3SG, use maximum value of 3]				0							
6	Intersection red light cameras (present/not present)				Not Present			Not				
7	Sum of all pedestrian crossing volumes (PedVol) Signalized intersections only											
8	Maximum	number of la	anes crossed b	y a pedestriar	n (n _{lanesx})							
9	Number o	f bus stops w	within 300 m (1	,000 ft) of the	intersection			0				
0	Schools v	vithin 300 m	(1,000 ft) of the	e intersection	(present/not pr	resent)		Not Pr	esent			Not
1	Number o	f alcohol sal	es establishmer	nts within 300	m (1,000 ft) of	the intersection	1	0	0			
2												
3												
14												
5			-	Wo	rksheet 2B	Crash Modific	ation Factors	s for Urban and S	Suburban Arter	rial Intersec	tions	
6	(1)		(2	2)	-	3)		(4)	(5)	((6)
17	CMF for Left-1	furn Lanes	CMF for Left Pha	-Turn Signal sing	CMF for Rig	ht-Turn Lanes	CMF for R	tight Turn on Red	CMF for	Lighting	CMF for Red	Light
9	CMF	11	CM	F 2i	CA	IF 3i	(CMF 4i	CM	F 5i	CM	1F 6i
0	from Table	12-24	from Tab	le 12-25	from Ta	ble 12-26	from E	quation 12-35	from Equa	ation 12-36	from Equ	ation
1	0.90)	0.	99	0	.92		1.00	0.	91	1	.00

Built-in CMFs in the Part C Spreadsheets (Worksheet 2B)

Countermeasures in the proposed conditions include:

- Install exclusive left-turn lane (NB approach)
- Install exclusive right-turn lanes (EB and SB approaches)
- Protected left-turn timing phase (NB approach)
- Replace 8" signal heads with 12" signal heads (CMF = 0.54; angle type)
- Additional vehicle signal heads (CMF = 0.72; primary signal)
- Additional countdown signal heads (CMF = 0.30; vehicle/pedestrian type)
- Additional crosswalks (CMF = 0.81; not all crash type)
- Signal backplate (CMF =0.85; all crash and severity type)

For 2019, which is the expected first year after construction, we have the following results:

	Existing (by Part C)	Turn Lanes (by Part C)	Plus Backplate (CMF = 0.85)	Proposed
Fatal/Injury	1.8	1.5	1.5 x 0.85 =	1.28
PDO	3.4	3.0	$3.0 \ge 0.85 =$	2.55
Total	5.2	4.5	4.5 x 0.85 =	3.83

Sample of a situation where the "exact fit" SPF was not available for a 6-Legged intersection

New Jersey Department of Transportation Bureau of Transportation Data & Safety

Current Traffic Control:

German Rd = overhead flashing beacons Parson Rd = stop signs with supplemental flashing beacons Allen Rd = stop signs with supplemental flashing beacons

AADT (2015):

German Road = 4,700 vpd Parson Rd and Allen Rd combined = 3.200 vpd

Proposed Countermeasure: 6-leg roundabout

From Table14-4 of the Highway Safety Manual:

Converting a Stop-Controlled Intersection into a Modern Roundabout

<u>Setting</u>	Crash Type	<u>CMF</u>	Standard Error
Rural (One Lane)	All Types (All Severeties)	0.29	0.04

	Calculated F	Results		
Iniun	Covority	Estim	ated Cost	
injury	seventy	2001*	2017	
Fat	al (K)	\$4,008,900	\$5,863,734.00	
Fatal and/or Inju	у (К/А/В/С)	\$158,200	\$229,212.00	
Disabling Inju	γ (A)	\$216,000	\$311,026.00	
Evident Inju	у (В)	\$79,000	\$113,627.00	
Possible Inju	y (C)	\$44,900	\$64,072.00	
Property Damage On	y (O)	\$7,400	\$10,369.00	
* Societal Cra	h Costs by Seve	erity, FHWA-H	RT-05-051, Octobe	e <mark>r 20</mark> 05
\$1,450,00	PROJECT CO	PROJECT COST ESTIMATE		
\$5,462,8	9 TOTAL CRAS	H REDUCTION	BENEFIT	
3.7	7 BENEFIT/CO	ST RATIO		S

Current Traffic Control:

German Rd = overhead flashing beacons Parson Rd = stop signs with supplemental flashing beacons Allen Rd = stop signs with supplemental flashing beacons

AADT (2015):

German Road = 4,700 vpd Parson Rd and Allen Rd combined = 3.200 vpd

Proposed Countermeasure: 6-leg roundabout

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Roundabouts in the United States

Table 19. Intersection-level safety prediction model for total crashes.

Number of	Safety Per	rformance Functions [Valid	ity Ranges]		
Circulating Lanes	3 legs	4 legs	5 legs		
1	0.0011(AADT) ^{0.7490} [4,000 to 31,000 AADT]	0.0023(AADT) ^{0.7490} [4,000 to 37,000 AADT]	0.0049(AADT) ^{0.7490} [4,000 to 18,000 AADT]		
2	0.0018(AADT) ^{0.7490} [3,000 to 20,000 AADT]	0.0038(AADT) ^{0.7490} [2,000 to 35,000 AADT]	0.0073(AADT) ^{0.7490} [2,000 to 52,000 AADT]		
3 or 4	Not In Dataset	0.0126(AADT) ^{0.7490} [25,000 to 59,000 AADT]	Not In Dataset		
Dispersion factor, k=0.8986					

Table 20. Intersection-level safety prediction model for injury crashes.

Number of	Safety Performance Functions [Validity Ranges]					
Circulating Lanes	3 legs 4 legs		5 legs			
1 or 2	0.0008(AADT) ^{0.5923} [3.000 to 31.000 AADT]	0.0013(AADT) ^{0.5923} [2.000 to 37.000 AADT]	0.0029(AADT) ^{0.5923} [2.000 to 52.000 AADT]			
3 or 4	Not In Dataset	0.0119(AADT) ^{0.5923} [25,000 to 59,000 AADT]	Not In Dataset			
Dispersion fac	ctor, k=0.9459					

NCHRP Report 672 (Roundabout: An Informational Guide, Second Edition)

Page 5-23, Exhibit 5-19 and Exhibit 5-20

For 2019, which is the expected first year after construction, we have the following results:

	Existing Condition [Intersection] (by Part C)	Proposed Condition [Roundabout] (by SPF)	Crash Reduction
Fatal/Injury	2.1	0.6	1.5
PDO	2.7 increase →	> 3.7	(1.0)
Total	4.8	4.3	0.5

While there is an increase in PDO, there is a substantial decrease in F/I crashes. Monetizing the increase/decrease in crashes using the HSM Comrehensive Crash Costs, in 2017 dollar value:

Benefit Cost for Reduced F/I	1.5 x \$229,212	=	\$ 343,818
Increased Crash Cost For PDO	(1.0 x \$10,369)	=	(\$ 10,369)
Net Crash Reduction Benefit Per Year			\$ 333,449

		Calculated R	esults		
	laina. C	ovority	Estim	ated Cost	
	injury S	eventy	2001*	2017	
	Fatal	(K)	\$4,008,900	\$5,863,734.00	
Fata	l and/or Injury	(K/A/B/C)	\$158,200	\$229,212.00	
D	isabling Injury	(A)	\$216,000	\$311,026.00	
	Evident Injury	(B)	\$79,000	\$113,627.00	
F	Possible Injury	(C)	\$44,900	\$64,072.00	
Property	Damage Only	(O)	\$7,400	\$10,369.00	
*	Societal Crash	Costs by Seve	rity, FHWA-H	RT-05-051, Octob	e <mark>r 200</mark>
	\$1,450,000	PROJECT COS	ST ESTIMATE		
	\$5,183,244	TOTAL CRASH	HREDUCTION	BENEFIT	
	3 57	BENEEIT/COS	ST RATIO		S

	Calculated Results					
In ium C		Estim	ated Cost			
injury S	eventy	2001*	2017			
Fatal	(K)	\$4,008,900	\$5,863,734.00			
Fatal and/or Injury	(K/A/B/C)	\$158,200	\$229,212.00			
Disabling Injury	(A)	\$216,000	\$311,026.00			
Evident Injury	(B)	\$79,000	\$113,627.00			
Possible Injury	(C)	\$44,900	\$64,072.00			
Property Damage Only	(0)	\$7,400	\$10,369.00			
* Societal Crash	Costs by Sev	erity, FHWA-H	RT-05-051, Octob	er 20		
\$1,450,000	PROJECT CO	ST ESTIMATE				
\$5,462,859	TOTAL CRAS	H REDUCTION	BENEFIT			
3.77	BENEFIT/CO	ST RATIO		S		

	Calculated	Results			
In lung of		Estim	Estimated Cost		
injury	eventy	2001*	2017		
Fata	I (K)	\$4,008,900	\$5,863,734.00		
Fatal and/or Injury	(K/A/B/C)	\$158,200	\$229,212.00		
Disabling Injury	(A)	\$216,000	\$311,026.00		
Evident Injury	(B)	\$79,000	\$113,627.00		
Possible Injury	(C)	\$44,900	\$64,072.00		
Property Damage Only	(0)	\$7,400	\$10,369.00		
* Societal Crash	Costs by Sev	erity, FHWA-H	RT-05-051, Octob	er 200	
\$1,450,000	PROJECT CO	ST ESTIMATE			
\$5,183,244	TOTAL CRAS	H REDUCTION	BENEFIT		
3.57	BENEFIT/CO	ST RATIO		S	

Thank you!

Dan LiSanti, Project Manager New Jersey DOT Bureau of Transportation Data & Safety <u>Dan.LiSanti@dot.nj.gov</u> (609)530-46922

Sample project regarding selecting an appropriate CMF

New Jersey Department of Transportation Bureau of Transportation Data & Safety

6 crashes occurred at this intersection between 2010 and 2014.

5 of the crashes were right angle crashes

2014 EXISTING PEAK HOUR WEEKDAY TRAFFIC VOLUMES

- Category: Intersection traffic control (40)
- Subcategory: Traffic control type (33)
- Countermeasure: Convert minor-road stop control to all-way stop control
- Countermeasure: Convert stop control to yield control
- Countermeasure: Install a traffic signal
- Countermeasure: Install a traffic signal (major road speed limit at least 40 mph)
- Subcategory: Signal phasing or timing (7)

 Countermeasure: Convert minor-road stop control to all-way stop control 											
Compare	е см	F (%)	Quality	Crash Type	Crash Severity	Area Type	Reference	Comments			
	0.2 [^{B]}	⁵ 75	ininini	Angle	All	Urban	Lovell and Hauer, 1986	Countermeasure name changed to match [read more]			
	0.52 ^[B]	48	*****	All	All	Rural	Harwood et al., 2000	Countermeasure name changed to match [read more]			
	0.57 [I]	43 🦻	nininini V	/ehicle/pedestria	an All	Urban	Lovell and Hauer, 1986	Countermeasure name changed to match [read more]			
	0.3 [^B]	70	*****	All	A,B,C	Urban	Lovell and Hauer, 1986	Countermeasure name changed to match [read more]			
	0.82 ^[B]	18		Rear end	All	Urban	Lovell and Hauer, 1986	Countermeasure name changed to match [read more]			
	0.71	29		Angle	All	Urban	Lovell and Hauer, 1986	Countermeasure name has been slightly [read more]			
	0.2	80	*****	Angle	All	Urban	Polanis, 1999	Countermeasure name has been slightly [read more]			

Countermeasure: Install a traffic signal

Compare	СМБ	CRI (%)	: Quality	Crash Type	Crash Severity	Area Type	Reference	Comments
	0.56 ^[B]	44	*rkikiki	All	All	Rural	Harkey et al., 2008	Countermeasure name has been slightly [read more]
	0.23 [^B]	77	*****	Angle	All	Rural	Harkey et al., 2008	Countermeasure name changed to match [read more]
	0.33	67	****	Angle	K,A,B,C	Urban	McGee et al., 2003	Countermeasure name has been slightly [read more]
	0.4 [^B]	60	*****	Left turn	All	Rural	Harkey et al., 2008	Countermeasure name changed to match [read more]
	1.58 [1]	-58	kokolo kik	Rear end	All	Rural	Harkey et al., 2008	Countermeasure name has been slightly [read more]
	0.656	34.4	****	All	All	Not specified	Wang and Abdel- Aty, 2014	CMF applies to intersections with [read more]
	1.119	-11.9	******	All	All	Not specified	Wang and Abdel- Aty, 2014	CMF applies to intersections with [read more]

Compare Reset Compare

Convert two-way w/o flashing beacons to all-way stop with flashing beacons

All crash types, all crash severities, all area types

CMF = 0.183 (4 stars) Reduces 81.7 % of crashes

Convert high speed rural intersection to 4-Legged Roundabout

All crash types, all crash severities, rural area

CMF = 0.32 (4 stars) Reduces 68 % of crashes

Install a traffic control signal

All crash types, all crash severities, rural area

CMF = 0.56 (5 stars) Reduces 44 % of crashes

How a CMF for signal head backplates was used to weigh the cost and the benefit of implementing backplates on a wide scale

New Jersey Department of Transportation Bureau of Transportation Data & Safety

Installation of backplates with retroreflective borders on existing steel mast arms

Reduced Left-Turn Conflict Intersections

Multiple Low Cost Countermeasures at Stop-Controlled

Longitudinal Rumble

D

Leading Pedestrian

Interval

Local Road Safety Plan

Median Barrier

Backplates with

Retroreflective Borders

Crossing Islands in Urban and Suburban Areas

Corridor Access

Dedicated Left- and Right-Turn Lanes

Road Die

at Intersections

Walkways

Yellow Change Intervals

Road Safety Audit

Backplates with Retroreflective Borders

Medians and Pedestrian Pedestrian Hybrid Beacon

Enhanced Delineation Curves

Installation of backplates with retroreflective borders on existing steel mast arms

Skip to main content | Notice | Sign Up for our

About the CMF Clearinghouse | Using CMFs | Developing CMFs | Additio

Home » Search Results

Search Results

There was 1 CMFs returned for your search on "**1410**". [modify your search].

Star Quality Rating	
□ 1 (0) □ 2 (0) □ 3 (0) □ 4 (1) □ 5 (0)	
Country	

Crash Type

Crash Severity

Results Control: Collapse All | Expand All Click on the links below to expand individual categories.

- Category: Intersection traffic control (1)
- Subcategory: Traffic control visibility (1)
- Countermeasure: Add 3-inch yellow retroreflective sheeting to signal backplates

U.S. & Canada (0)	Compare	CMF	CRF (%)	Quality	Crash Type	Crash Severity	Area Type	Reference
Crash Type		0.85	15	****	All	All	Urban	Sayed et al., 2005
Crash Severity		*N	OTE: You	Comp can compare CMFs	are Res	set Compare	egories, and o	categories.

Source: FHWA

Safety Benefit:

15% Reductions in total crashes

Source: CMF Clearinghouse, CMF ID 1410.

Installation of backplates with retroreflective borders on existing steel mast arms

Sixteen over the roadway signal heads will be equipped with backplates at this intersection

Installation of backplates with retroreflective borders on existing steel mast arms

· · · · ·	Worksheet 2	Arterial Inte	rsections					
Gene	n		Location Information					
Analyst		M Tozzi	Roadway	Roadway Route NJ 70				
Agency or Company			NJDOT		Intersection		Massachusetts Avenue	
Date Performed			04/17/17		Jurisdiction		Toms River, NJ	
					Analysis Year		2020	
	Input Data				Base Conditions		Site Conditions	
Intersection type (3ST, 3SG, 4ST, 4SG)							4SG	
AADT _{major} (veh/day)	,	AADT _{MAX} =	67,700	(veh/day)			25,720	
AADT _{minor} (veh/day)	1	AADT _{MAX} =	33,400	(veh/day)	-		9,538	
Intersection lighting (present/not present)					Not Present		Present	
Calibration factor, Ci					1.00		1.00	
Data for unsignalized intersections only:								
Number of major-road approaches with left-turn lanes (0,1,2)					0		0	
Number of major-road approaches with	h right-turn lanes	s (0,1,2)			0		0	
Data for signalized intersections only:					-		-	
Number of approaches with left-turn la	anes (0,1,2,3,4)	[for 3SG, use	maximum	value of 3]	0		4	
Number of approaches with right-turn I	lanes (0,1,2,3,4)) [for 3SG, us	se maximu	m value of 3]	0		2	
Number of approaches with left-turn sig	ignal phasing [fo	r 3SG, use n	naximum v	alue of 3]		4		
Type of left-turn signal phasing for Leg	g #1				Permissive		Protected / Permissive	
Type of left-turn signal phasing for Leg	g #2						Protected / Permissive	
Type of left-turn signal phasing for Leg	g #3						Protected	
Type of left-turn signal phasing for Leg	g #4 (if applicabl	e)			-		Protected	
Number of approaches with right-turn-	on-red prohibited	d [for 3SG, us	se maximu	m value of 3]	0		0	
Intersection red light cameras (present	nt/not present)				Not Present		Not Present	
Sum of all pedestrian crossing volume	es (PedVol) S	ignalized inte	ersections	only			240	
Maximum number of lanes crossed by	y a pedestrian (r	ו _{lanesx})					5	
Number of bus stops within 300 m (1,0	000 ft) of the inte	ersection			0		0	
Schools within 300 m (1,000 ft) of the	intersection (pre	esent/not pre	sent)		Not Present		Not Present	
Number of alcohol sales establishmen	nts within 300 m	(1,000 ft) of	the interse	ction	0		0	

Worksheet 2L Summary Resul	ts for Urban and Suburban Arterial Intersections
(1)	(2)
Crash severity level	Predicted average crash frequency, N _{predicted int} (crashes/year)
	(Total) from Worksheet 2K
Total	3.8
Fatal and injury (FI)	1.3
Property damage only (PDO)	2.5

					-	
	Inium C	overity	Estim	Estimated Cost		
	injury severity		2001*	2017		
	Fatal	(K)	\$4,008,900	\$5,708,202.00		
Fatal	and/or Injury	(K/A/B/C)	\$158,200	\$223,295.00		
Dis	ability Injury	(A)	\$216,000	\$303,144.00		
E	vident Injury	(B)	\$79,000	\$110,757.00		
Po	ssible Injury	(C)	\$44,900	\$62,492.00		
Property D	Damage Only	(0)	\$7,400	\$10,128.00		
•	Societal Crash	Costs by Sev	erity, FHWA-	HRT-05-051, Octo	ber	2005
	\$28,800 Project Cost					
	\$790,842	TOTAL CRAS	H BENEFIT			
	27.46	Benefit / Co	ost Ratio			

Installation of backplates with retroreflective borders on existing steel mast arms

ESTIMATIONS:

2,850 Traffic Control Signals * 50% on steel mast arm = 1,425

 $1,425 \div 4$ traffic control signals have steel on all 4 approaches = 356

cost per intersection with 4 approaches, 2 signal heads per approach and steel on all four corners is \$22,880.

cost per intersection with 2 approaches with steel mast arms on two approaches is \$11,440 assuming signal heads are not installed

Approximate cost to install backplates on the entire state signal system = **\$ 21,000,000**

CMFs used in evaluating the potential implementation for curb extensions when a CMF for curb extensions is not available

New Jersey Department of Transportation Bureau of Transportation Data & Safety

CMF for curb extensions

CMFs for curb extensions

Countermeasure: I	ncrease triangle	sight distance
-------------------	------------------	----------------

Compare	CMF	CRF (%)	Quality	Crash Type	Crash Severity	Area Type	Reference	Comments
	0.53	48	WRON	All	A,B,C	Not specified	Elvik, R. and Vaa, T., 2004	
	0.89	11	*****	All	0	Not specified	Elvik, R. and Vaa, T., 2004	
	0.44	56	***	All	К		Rodegerdts et al., 2004	
	0.63	37	*****	All	A,B,C		Rodegerdts et al., 2004	
	1.3	-30	ROOOR	All	A,B,C	Not specified	Elvik, R. and Vaa, T., 2004	
	1.29	-29	*NOOOR	All	0	Not specified	Elvik, R. and Vaa, T., 2004	

Thank you!

Mark Tozzi, Section Chief New Jersey DOT Bureau of Transportation Data & Safety <u>Mark.Tozzi@dot.nj.gov</u> (609)530-42622